Issue 9, 2020

K+ modulated K+/vacancy disordered layered oxide for high-rate and high-capacity potassium-ion batteries

Abstract

With high theoretical capacity and applicable operating voltage, layered transition metal oxides are potential cathodes for potassium-ion batteries (PIBs). However, a K+/vacancy ordered structure in these oxides limits the K+ transport kinetics and storage sites so that the PIBs still have poor rate performance and low achievable capacity. Here, to effectively resolve the problem, a K+/vacancy disordered P3-type structure is designed and synthesized by simply modulating the K+ contents in Mn/Ni-based layered oxides. The effect of the K+ contents in a series of KxMn0.7Ni0.3O2 (x = 0.4–0.7) oxides has been systematically studied and it is found that while the K+/vacancy ordered superstructure is stable at low K+ content (x < 0.6), a complete K+/vacancy disordered structure forms at high K+ content (x > 0.6), evidenced by selected area electron diffraction and voltage plateaus in the charge/discharge curves. The K+/vacancy disordered K0.7Mn0.7Ni0.3O2 exhibits much better rate performance and higher discharge capacity, compared to the K+/vacancy ordered K0.4Mn0.7Ni0.3O2. Molecular dynamic simulations confirm that the K+/vacancy disordered structure possesses interconnected continuous channels for K+ diffusion and more active storage sites. This discovery sheds light on rational design of K+/vacancy disordered layered oxide cathodes for next-generation high-performance PIBs.

Graphical abstract: K+ modulated K+/vacancy disordered layered oxide for high-rate and high-capacity potassium-ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
20 May 2020
Accepted
05 Aug 2020
First published
08 Aug 2020

Energy Environ. Sci., 2020,13, 3129-3137

K+ modulated K+/vacancy disordered layered oxide for high-rate and high-capacity potassium-ion batteries

Z. Xiao, J. Meng, F. Xia, J. Wu, F. Liu, X. Zhang, L. Xu, X. Lin and L. Mai, Energy Environ. Sci., 2020, 13, 3129 DOI: 10.1039/D0EE01607A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements