Issue 7, 2020

In situ structural evolution of the multi-site alloy electrocatalyst to manipulate the intermediate for enhanced water oxidation reaction

Abstract

Investigating the reaction mechanism and the rational design of highly efficient electrocatalysts for the oxygen evolution reaction play a key role in renewable energy applications. Here, we report a homogeneous multi-metal-site oxyhydroxide electrocatalyst (consisting of Fe doped NiOOH and Cu doped NiOOH) obtained by in situ electrochemical dealloying of the multi-metal-site alloy (consisting of FeNi3 and NiCu alloys). The in situ structural evolution process manipulates the intermediate and enhances the water oxidation performance. After dealloying, the electrochemically dealloyed catalyst exhibits a small overpotential at large current density (250 mV at 100 mA cm−2), low Tafel slope (34 mV dec−1), remarkably increased ECSA (8-fold larger than before), and superior durability for 200 h at 100 mA cm−2. This electrocatalyst presents one of the best performances among all reported transition metal-based electrocatalysts, and is even superior to the benchmark RuO2. Operando ATR FT-IR reveals that the electrochemically dealloyed electrocatalyst could manipulate the reaction path based on direct O2 evolution mechanism (DOEM) and facilitate the formation of O–O bonds. This fundamental understanding will contribute to the identification and design of the active structure of oxygen evolution electrocatalysts.

Graphical abstract: In situ structural evolution of the multi-site alloy electrocatalyst to manipulate the intermediate for enhanced water oxidation reaction

Supplementary files

Article information

Article type
Paper
Submitted
09 Mar 2020
Accepted
28 May 2020
First published
28 May 2020

Energy Environ. Sci., 2020,13, 2200-2208

In situ structural evolution of the multi-site alloy electrocatalyst to manipulate the intermediate for enhanced water oxidation reaction

B. Wang, K. Zhao, Z. Yu, C. Sun, Z. Wang, N. Feng, L. Mai, Y. Wang and Y. Xia, Energy Environ. Sci., 2020, 13, 2200 DOI: 10.1039/D0EE00755B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements