Issue 38, 2020

Tuneable solvent adsorption and exchange by 1D bispidine-based Mn(ii) coordination polymers via ligand design

Abstract

Here we report novel bispidine-based coordination polymers (CPs) 2·TCM, 3·TCM, 3·NB, 5·TCM and 5·TCM·NB, of compostition [Mn(Cl)2(L2)2·(TCM)2], [Mn(Cl)2(L3)2·(TCM)5], [Mn(Cl)2(L3)2·(NB)8], [Mn(Cl)2(L5)2·(TCM)4], [Mn(Cl)2(L5)2·(TCM)2·(NB)2], respectively (NB = nitrobenzene; TCM = chloroform). They were obtained starting from novel bispidine ligands L2 (dimethyl 7-isopropyl-3-methyl-9-oxo-2,4-di(pyridin-4-yl)-3,7-diazabicyclo[3.3.1]nonane-1,5-dicarboxylate), L3 (dimethyl 7-(cyclohexylmethyl)-3-methyl-9-oxo-2,4-di(pyridin-4-yl)-3,7-diazabicyclo[3.3.1]nonane-1,5-dicarboxylate) and L5 (dimethyl 7-(4-(dimethylamino)benzyl)-3-methyl-9-oxo-2,4-di(pyridin-4-yl)-3,7-diazabicyclo[3.3.1]nonane-1,5-dicarboxylate), The novel CPs were characterized by single crystal X-ray diffraction (SC-XRD), powder X-ray diffraction (PXRD) and thermal analyses (TGA). We describe their structural and dynamic properties in terms of solvent exchange and adsorption processes, and we outline the general trends observed on the basis of a total of 16 X-ray structures (4 new) and 21 microcrystalline powder phases (10 new), which have been obtained so far for CPs by coordination of ligands L1–L5, having different substitution at the N7 position. This large set of CPs comprises monosolvated, bisolvated and desolvated species, and it shows a good demonstration of how small differences in the functionalization of the organic ligand can have a strong impact on the resulting structural and dynamic properties of this class of 1D CPs.

Graphical abstract: Tuneable solvent adsorption and exchange by 1D bispidine-based Mn(ii) coordination polymers via ligand design

Supplementary files

Article information

Article type
Paper
Submitted
05 Aug 2020
Accepted
30 Aug 2020
First published
31 Aug 2020

Dalton Trans., 2020,49, 13420-13429

Tuneable solvent adsorption and exchange by 1D bispidine-based Mn(II) coordination polymers via ligand design

M. Lippi, J. Caputo, F. Meneghetti, C. Castellano, J. Martí-Rujas and M. Cametti, Dalton Trans., 2020, 49, 13420 DOI: 10.1039/D0DT02734K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements