Issue 40, 2020

Bonded- and discreted-Lindqvist hexatungstate-based copper hybrids as heterogeneous catalysts for the one-pot synthesis of 2-phenylquinoxalines via 2-haloanilines with vinyl azides or 3-phenyl-2H-azirines

Abstract

One bonded- and one discreted-Lindqvist hexatungstate-based copper hybrids (Cu-POMs) ([Cu2(O)OH(phen)2]2[W6O19]·6H2O (1) and [Cu2(phen)4Cl] [HW6O19]·2H2O (2) (phen = 1,10-phenanthroline)) were controllably synthesized and routinely characterized. Cu-POMs 1–2 consisted of identical [W6O19] unit and similar copper–phen complexes, the two units are bonded via four Cu–O chemical bonds in compound 1; however, compound 2 is discreted and stabilized by intermolecular electrostatic interactions. Importantly, these Cu-POMs catalysts were first applied in the novel reaction for the preparation of 2-phenylquinoxalines via the one-pot coupling and oxidation reactions of 2-haloanilines with vinyl azides or 3-phenyl-2H-azirines under mild conditions, and Cu-POMs 1 showed higher catalytic performance in good yields (79–84%). The reactions exhibit some functional group tolerance and allow for the preparation of a number of 2-phenylquinoxalines.

Graphical abstract: Bonded- and discreted-Lindqvist hexatungstate-based copper hybrids as heterogeneous catalysts for the one-pot synthesis of 2-phenylquinoxalines via 2-haloanilines with vinyl azides or 3-phenyl-2H-azirines

Supplementary files

Article information

Article type
Paper
Submitted
25 Jul 2020
Accepted
19 Aug 2020
First published
21 Aug 2020

Dalton Trans., 2020,49, 13993-13998

Bonded- and discreted-Lindqvist hexatungstate-based copper hybrids as heterogeneous catalysts for the one-pot synthesis of 2-phenylquinoxalines via 2-haloanilines with vinyl azides or 3-phenyl-2H-azirines

G. Shen, Z. Wang, X. Huang, S. Gong, J. Zhang, Z. Tang, M. Sun and X. Lv, Dalton Trans., 2020, 49, 13993 DOI: 10.1039/D0DT02625E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements