Issue 39, 2020

Advances in soft X-ray RIXS for studying redox reaction states in batteries

Abstract

Redox (reduction and oxidation) chemistry provides the fundamental basis for numerous energy-related electrochemical devices. Detecting the electrochemical redox chemistry is pivotal but challenging because it requires independent probes of the cationic and anionic redox states at different electrochemical states. The synchrotron-based soft X-ray mapping of resonant inelastic X-ray scattering (mRIXS) has recently emerged as a powerful tool for exploring such states in electrochemical devices, especially batteries. High-efficiency mRIXS covers the energy range of the absorption edge with the extra dimension of information on the emitted photon energies. In this frontier article, we review recent representative demonstrations of utilizing soft X-ray mRIXS for detecting the novel chemical state during electrochemical operation and for quantifying the cationic redox reactions through inverse partial fluorescence yield analysis (mRIXS-iPFY). More importantly, the non-divalent states of oxygen in electrodes involving oxygen redox reactions could be reliably captured by mRIXS, with its reversibility quantified by the intensity variation of the characteristic mRIXS feature through a super-partial fluorescence yield analysis (mRIXS-sPFY). These recent demonstrations inspire future perspectives on using mRIXS for studying the complex phenomena in energy materials, with both technical and scientific challenges in RIXS theory, in situ/operando experiments, and spatially resolved RIXS imaging.

Graphical abstract: Advances in soft X-ray RIXS for studying redox reaction states in batteries

Article information

Article type
Frontier
Submitted
18 May 2020
Accepted
16 Jul 2020
First published
17 Jul 2020

Dalton Trans., 2020,49, 13519-13527

Author version available

Advances in soft X-ray RIXS for studying redox reaction states in batteries

J. Wu, Y. Yang and W. Yang, Dalton Trans., 2020, 49, 13519 DOI: 10.1039/D0DT01782E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements