Issue 25, 2020

Temperature selectivity for single phase hydrothermal synthesis of PEG-400 coated magnetite nanoparticles

Abstract

Herein, we have presented a detailed investigation of the temperature effect on hydrothermal synthesis of Fe3O4 magnetic nanoparticles (MNPs). The appearance of single-phase cubic spinel Fe3O4 at and above critical temperature provides a clear indication that temperature plays a crucial role in the single-phase synthesis of the Fe3O4 MNPs. A detailed investigation of the structural, magnetic and spin dynamic properties of PEG-400 coated Fe3O4 MNPs synthesized by a facile hydrothermal method at different temperatures (120 °C, 140 °C, 160 °C and 180 °C for 16 hours) has been presented. The single-phase cubic magnetite structure with high crystallinity was found in the samples synthesized at 160 and 180 °C and confirmed from XRD results, whereas samples prepared at 120 and 140 °C are of mixed phase (α-Fe2O3 and Fe3O4). The magnetic hysteresis curves reveal that saturation magnetization and coercivity of MNPs enhanced systematically with the increase in the reaction temperature from 120 °C to 180 °C. Maximum saturation magnetization (88.98 emu g−1) and coercivity (134.16 Oe) were found for the sample synthesized at 180 °C. Furthermore, ferromagnetic resonance (FMR) spectra obtained for samples synthesised at higher temperatures indicate a lower value of the line width due to the high magnetic ordering in the samples. Also, the resonance field decreased, and the g-value increased due to enhancement in magnetization for the single-phase samples synthesized at higher reaction temperatures. The spin resonance properties obtained from fitting the FMR data clearly indicate that a large spin–orbit coupling was observed for the single phase Fe3O4 MNPs and excellent magnetic properties were obtained from the static magnetic measurements.

Graphical abstract: Temperature selectivity for single phase hydrothermal synthesis of PEG-400 coated magnetite nanoparticles

Article information

Article type
Paper
Submitted
10 Apr 2020
Accepted
03 Jun 2020
First published
03 Jun 2020

Dalton Trans., 2020,49, 8672-8683

Temperature selectivity for single phase hydrothermal synthesis of PEG-400 coated magnetite nanoparticles

P. Kumar, H. Khanduri, S. Pathak, A. Singh, G. A. Basheed and R. P. Pant, Dalton Trans., 2020, 49, 8672 DOI: 10.1039/D0DT01318H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements