Cyclometalated iridium(iii) complexes for mitochondria-targeted combined chemo-photodynamic therapy†
Abstract
The combination of chemotherapeutic and photodynamic activities in an iridium-based molecular compound is less reported. Herein, two iridium complexes (IrC1 and IrC2) with β-carboline alkaloid ligands were designed and synthesized. Both complexes exhibited high anticancer activities with IC50 values of around 1 μM in the dark against several cell lines tested. Notably, the cytotoxicity of these two complexes against lung cancer (A549) cells increased significantly under light (425 nm) irradiation, with phototoxicity index (PI) values of 120 and 93, respectively. They were specifically enriched in the mitochondria. Cell-based assays demonstrated that IrC1 induced an increase in intracellular reactive oxygen species (ROS) levels, reduction in ATP production, mitochondrial DNA damage, an increase in lipid peroxidation levels, and proteasomal activity inhibition. Under light conditions (in some cases a two-photon laser was also applied), these effects were greatly enhanced. Overall, we have demonstrated that these iridium complexes have dual activities of chemotherapy and photodynamic therapy, which may help to design new metal-based anticancer agents for combined chemo-photodynamic therapy.