Issue 17, 2020

Synthesis, characterization and biological activity of bromido[3-ethyl-4-aryl-5-(2-methoxypyridin-5-yl)-1-propyl-1,3-dihydro-2H-imidazol-2-ylidene]gold(i) complexes

Abstract

Bromido[3-ethyl-4-aryl-5-(2-methoxypyridin-5-yl)-1-propyl-1,3-dihydro-2H-imidazol-2-ylidene]gold(I) complexes (8a–h) with methoxy, methyl and fluorine substituents at different positions of the 4-aryl ring were synthesized and characterized. The relevance of the 2-methoxypyridin-5-yl residue and the substituents at the 4-aryl ring with regard to the activity against a series of cell lines was determined. Particularly against the Cisplatin-resistant ovarian cancer cell line A2780cis, the most active bromido[3-ethyl-4-(4-methoxyphenyl)-5-(2-methoxypyridin-5-yl)-1-propyl-1,3-dihydro-2H-imidazol-2-ylidene]gold(I) complex 8c was more active than Auranofin. It also inhibited thioredoxin reductase more effectively and induced high amounts of reactive oxygen species in A2780cis cells. Furthermore, its influence on non-cancerous SV 80 lung fibroblasts was lower than that of Auranofin. This fact, together with a high accumulation rate in tumor cells, determined on the example of MCF-7 cells, makes this complex an interesting candidate for further extensive studies.

Graphical abstract: Synthesis, characterization and biological activity of bromido[3-ethyl-4-aryl-5-(2-methoxypyridin-5-yl)-1-propyl-1,3-dihydro-2H-imidazol-2-ylidene]gold(i) complexes

Supplementary files

Article information

Article type
Paper
Submitted
20 Dec 2019
Accepted
05 Mar 2020
First published
06 Mar 2020

Dalton Trans., 2020,49, 5471-5481

Synthesis, characterization and biological activity of bromido[3-ethyl-4-aryl-5-(2-methoxypyridin-5-yl)-1-propyl-1,3-dihydro-2H-imidazol-2-ylidene]gold(I) complexes

C. M. Gallati, S. K. Goetzfried, M. Ausserer, J. Sagasser, M. Plangger, K. Wurst, M. Hermann, D. Baecker, B. Kircher and R. Gust, Dalton Trans., 2020, 49, 5471 DOI: 10.1039/C9DT04824C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements