Efficient Cu catalyst for 5-hydroxymethylfurfural hydrogenolysis by forming Cu–O–Si bonds†
Abstract
Selective hydrogenolysis of C–O bonds of biomass derived precursors has been identified as a promising and essential way to produce fuel additives. Supported transition metals were explored to give efficient reactivity commonly based on a bifunctionality strategy. Here, we report that covalent bonding between SiO2 and Cu features a homologous bifunctional catalyst with metallic Cu and Lewis acidic Cu cations. The catalyst gave superior reactivity for the conversion of 5-hydroxymethylfurfural into 2,5-dimethylfuran. Lewis acidic cations had more predominant roles than metallic sites for C–O hydrogenolysis by stretching and dissociating C–O bonds, whereas they remained inactive for C
C bonds. The results rationalize the valence-state-sensitive catalysis for chemistry involving C–O cleavage. The covalent metal–O–Si bonding provides an alternative for developing efficient catalysts since silicates with such a feature are versatile in nature.

Please wait while we load your content...