Localized catalysis driven by the induction heating of magnetic nanoparticles†
Abstract
Controlling temperature with high spatial resolution has been a challenge and the bottleneck for advancing scientific discoveries at the micro-scale level. Herein, we exploit the heat generated from magnetic nanoparticles when placed in an alternating magnetic field to drive catalytic chemical reactions. A catalytic microstructure was assembled using a positively charged polyelectrolyte in the presence of negatively charged magnetic and gold nanoparticles. As a proof of concept, we monitored the conversion of resazurin into the fluorescent resorufin in solution and when confined in small hydrogels. In both cases, we demonstrate the possibility to drive chemical reactions using the locally generated heat from magnetic nanoparticles. This might prove an effective strategy for energy efficient catalysis.