Issue 48, 2020

N-Heterocyclic carbene (NHC)-catalyzed oxidative [3+2] annulation of dioxindoles and enals: mechanism, role of NHC, role of a mixture of bases with different strength, and origin of stereoselectivity

Abstract

Over recent years, in-depth understanding of the mechanism of oxidative N-heterocyclic carbene (NHC) catalyzed reactions in the presence of a mild oxidant and the structure of key radical intermediates have been considered as an important challenge in organic chemistry. Furthermore, the role of using a mixture of bases with different strengths is unclear in NHC-catalyzed reactions. In this paper, the detailed competing oxidative mechanisms, origin of stereoselectivity, and role of the NHC-organocatalyst in the NHC-catalyzed reactions of dioxindoles with enals were studied using the density functional theory method. In addition, the roles of newly produced Brønsted acids of the applied bases, i.e.DBU·H+ and DABCO·H+, are examined. The computational results indicated that the oxidation of the Breslow intermediate by nitrobenzene (NB) occurs first through a hydrogen atom transfer (HAT) pathway from the Breslow intermediate, and then it is oxidized into acyl azolium by single electron transfer (SET). We found that the energy barrier of the proton transfer processes is remarkably reduced by the conjugated Brønsted acid of the weaker base in the solution. Further, the calculated results revealed that the NHC catalyst has different behavior before and after the oxidation of the Breslow intermediate in these reactions. Before oxidation, the nucleophilicity of R1 increased by adding R1 to NHC, while, after the oxidation process, the electrophilicity of R1 increases, and as a result the product of oxidation, α, β unsaturated acyl azolium, acts as an electrophile. This mechanistic study paves the way for the rational design of oxidative NHC-catalyzed reactions.

Graphical abstract: N-Heterocyclic carbene (NHC)-catalyzed oxidative [3+2] annulation of dioxindoles and enals: mechanism, role of NHC, role of a mixture of bases with different strength, and origin of stereoselectivity

Supplementary files

Article information

Article type
Paper
Submitted
29 Sep 2020
Accepted
23 Nov 2020
First published
23 Nov 2020

Phys. Chem. Chem. Phys., 2020,22, 28269-28276

N-Heterocyclic carbene (NHC)-catalyzed oxidative [3+2] annulation of dioxindoles and enals: mechanism, role of NHC, role of a mixture of bases with different strength, and origin of stereoselectivity

E. Hosseinzadeh and A. Heydari, Phys. Chem. Chem. Phys., 2020, 22, 28269 DOI: 10.1039/D0CP05129B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements