Anchoring a bow-shaped boron single chain in binary Be6B7− cluster: hybrid octagonal ring, multifold π/σ aromaticity, and dual electronic transmutation†
Abstract
Elemental boron clusters do not form linear chain or monocyclic ring structures, which is in contrast to carbon. Based on computer global searches and quantum chemical calculations, we report on the viability of a curved boron single chain in binary Be6B7− cluster. The boron motif assumes a bow shape, being anchored on a Be6 prism. Such a motif, which appears to be highly strained in its free-standing form, is exotic in boron-based clusters and nanostructures. Chemically, the cluster is analogous to a “clam-and-pearl-chain” system at the nanoscale (about 1 nm in size), in which a Be6 clam moderately opens its mouth, except that a B7 pearl chain is too large to be encapsulated inside. The picture differs from a three-layered sandwich. This cluster features a hybrid Be2B7 monocyclic ring, which is octagonal in nature and supports double 10π/6σ aromaticity. The number of π bonds substantially surpasses that in bare boron clusters of similar sizes. Two Be3 rings in the prism are also σ aromatic, albeit with effective 1σ/1σ electron-counting only. The unique multifold 1σ/10π/6σ/1σ aromaticity governs the geometry of the Be6B7− cluster, which can also be rationalized using the concept of dual electronic transmutation.
- This article is part of the themed collection: 2020 PCCP HOT Articles