Issue 25, 2020

Spin dynamics of hydrothermally synthesized δ-MnO2 nanowhiskers

Abstract

We have reported novel 2D monoclinic, P63/mnm, δ-MnO2 nanowhiskers synthesized through a simple and facile hydrothermal route under optimized conditions without using any template. The X-ray diffraction pattern shows the formation of the δ phase of MnO2, which is further confirmed by Fourier transform infrared (FT-IR) spectroscopy and Raman spectroscopy. The transmission electron micrograph revealed nanowhiskers having a diameter of ∼7 nm and the high-resolution TEM and SAED patterns demonstrated the interplanar spacing and distinguished diffraction rings corresponding to the monoclinic phase of δ-MnO2. Fitting the temperature-dependent susceptibility with the Curie–Weiss law confirms the strong antiferromagnetic ordering and high effective magnetic moment of Mn4+ present in δ-MnO2. The large effective magnetic moment is attributed to the presence of both Mn3+ and Mn4+, as confirmed by XPS. The reduced valency of Mn from 4 to 3 is accompanied with oxygen vacancies, affording the exact composition of MnO1.58. The dynamic magnetic properties of the δ-MnO2 nanowhiskers were investigated using the frequency-dependent AC susceptibility fitted with various phenomenological models like the Vogel–Fulcher law and power law, indicating the existence of interacting spin clusters, which could freeze at ∼11.2 K. The time dependence of thermoremanent magnetization fitted well with a stretched exponential function, supporting the existence of relaxing spin clusters. Thus, the spin glass relaxation in the δ-MnO2 nanowhiskers is attributed to the interaction between Mn4+ and Mn3+, which results in intrinsic magnetic frustration and weak ferromagnetism with finite coercivity below Tf.

Graphical abstract: Spin dynamics of hydrothermally synthesized δ-MnO2 nanowhiskers

Article information

Article type
Paper
Submitted
27 Apr 2020
Accepted
04 Jun 2020
First published
04 Jun 2020

Phys. Chem. Chem. Phys., 2020,22, 14236-14245

Spin dynamics of hydrothermally synthesized δ-MnO2 nanowhiskers

D. Gangwar and C. Rath, Phys. Chem. Chem. Phys., 2020, 22, 14236 DOI: 10.1039/D0CP02245D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements