Issue 26, 2020

Controlling the nanoscale friction by layered ionic liquid films

Abstract

The nanofriction coefficient of ionic liquids (ILs), 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]), on the surfaces of mica and graphite was investigated using atomic force microscopy (AFM). A pronounced layered spatial distribution was found in the IL film formed on the solid substrates and can be divided into 3 well distinguishable regions exhibiting different physical properties with increasing distance from the substrate. We found that the friction coefficient (μ) increases monotonically as the layering thickness decreases, no matter what the thickness of the bulk IL is. This suggests that the layering assembled IL at solid surfaces is more important than the bulk phase in determining the magnitude of the nanoscale friction. The increase in the friction coefficient as the layering thickness decreases is most likely attributed to the assembled ordered IL layers closer to the substrate surfaces having a greater activation barrier for unlocking the surfaces to allow shear.

Graphical abstract: Controlling the nanoscale friction by layered ionic liquid films

Supplementary files

Article information

Article type
Paper
Submitted
22 Apr 2020
Accepted
22 Jun 2020
First published
23 Jun 2020

Phys. Chem. Chem. Phys., 2020,22, 14941-14952

Controlling the nanoscale friction by layered ionic liquid films

R. An, X. Qiu, F. U. Shah, K. Riehemann and H. Fuchs, Phys. Chem. Chem. Phys., 2020, 22, 14941 DOI: 10.1039/D0CP02146F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements