Issue 17, 2020

Effects of non-halogenated solvent on the main properties of a solution-processed polymeric thin film for photovoltaic applications: a computational study

Abstract

Organic photovoltaic (OPV) devices have reached high power conversion efficiencies, but they are usually processed using halogenated toxic solvents. Hence, before OPV devices can be mass-produced by industrial processing, it would be desirable to replace those solvents with eco-friendly ones. Theoretical tools may be then a powerful ally in the search for those new solvents. In order to better understand the mechanisms behind the interaction between solvent and polymer, classical molecular dynamics (MD) calculations were used to produce a thin film of poly(4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl) (PTB7-Th), processed using two different solvents. PTB7-Th is widely applied as a donor material in OPVs. The first solvent is ortho-dichlorobenzene (o-DCB), which is a highly toxic solvent widely used in lab-scale studies. The second solvent is ortho-methylanisole (o-MA), which is an eco-friendly solvent for organic photovoltaic (OPV) manufacturing. Here we use a solvent evaporation protocol to simulate the formation of the PTB7-Th film. We demonstrate that our theoretical MD calculations were able to capture some differences in the macroscopic properties of thin films formed by o-DCB or o-MA evaporation. We found that the interaction of the halogenated solvent with the polymer tends to break the bonds between the lateral thiophenediyl groups and the main chain. We show that those defects may create traps that can affect the charge transport and also can be responsible for a blue shift in the absorption spectrum. Using the Monte Carlo method, we also verified the influence of the resulting MD morphology on the mobility of holes. Our theoretical results showed good agreement with the experimental measurements and both demonstrate that o-MA can be used to make polymer thin films without any loss of key properties for the device performance. The findings here highlight the importance of theoretical results as a guide to the morphological optimization of green processed polymeric films.

Graphical abstract: Effects of non-halogenated solvent on the main properties of a solution-processed polymeric thin film for photovoltaic applications: a computational study

Supplementary files

Article information

Article type
Paper
Submitted
07 Mar 2020
Accepted
14 Apr 2020
First published
14 Apr 2020

Phys. Chem. Chem. Phys., 2020,22, 9693-9702

Effects of non-halogenated solvent on the main properties of a solution-processed polymeric thin film for photovoltaic applications: a computational study

K. R. D. A. Sousa, L. Benatto, L. Wouk, L. S. Roman and M. Koehler, Phys. Chem. Chem. Phys., 2020, 22, 9693 DOI: 10.1039/D0CP01303J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements