Issue 21, 2020

Poly-γ-glutamic acid derived nanopolyplexes for up-regulation of gamma-glutamyl transpeptidase to augment tumor active targeting and enhance synergistic antitumor therapy by regulating intracellular redox homeostasis

Abstract

The active targeting strategy has achieved inspiring progress for drug accumulation in tumor therapy; however, the insufficient expression level of many potential receptors poses challenges for drug delivery. Poly-γ-glutamic acid (γ-pGluA), a naturally occurring anionic biopolymer, showed high affinity with tumor-associated gamma-glutamyl transpeptidase (GGT), which localized on the cell surface and exhibited intracellular redox homeostasis-dependent expression pattern; thus, GGT was utilized for mediating endocytosis of nanoparticles. Herein, GGT-targeting nanopolyplexes (γ-pGluA-CSO@Fe3+, PCFN) consisting of cationic chitosan and GGT-targeting γ-pGluA blended with iron ion were constructed to load reactive oxygen species-induced menadione (MA) and doxorubicin, which were utilized to investigate the mechanism of GGT up-regulation. Briefly, the pretreated PCFN/MA induced an intracellular oxidative stress environment, which facilitated adjusted up-regulated GGT expression and boosted tumor targeting. Subsequently, the destroyed redox homeostasis sensitized tumors for synergistic therapy. The innovative strategy of augmenting active targeting by disturbing intracellular redox homeostasis offers insight for the application of γ-pGluA-derived nanopolyplexes.

Graphical abstract: Poly-γ-glutamic acid derived nanopolyplexes for up-regulation of gamma-glutamyl transpeptidase to augment tumor active targeting and enhance synergistic antitumor therapy by regulating intracellular redox homeostasis

Supplementary files

Article information

Article type
Paper
Submitted
29 Jul 2020
Accepted
09 Sep 2020
First published
10 Sep 2020

Biomater. Sci., 2020,8, 5955-5968

Poly-γ-glutamic acid derived nanopolyplexes for up-regulation of gamma-glutamyl transpeptidase to augment tumor active targeting and enhance synergistic antitumor therapy by regulating intracellular redox homeostasis

F. Yu, Y. Zhu, Y. Liu, G. Qiu, X. Shang, T. Meng, H. Yuan and F. Hu, Biomater. Sci., 2020, 8, 5955 DOI: 10.1039/D0BM01254H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements