Issue 21, 2020

Biomaterial-assisted photoimmunotherapy for cancer


With the development of phototherapy, which is a type of light-induced cancer treatment, various biomaterials have been well designed as photoabsorbing/sensitizing agents or effective carriers to enhance the therapeutic efficacy and evade the side effects of phototherapy. In recent years, the immunological responses induced by phototherapy have been widely explored, which are mainly triggered by the tumor associated antigens (TAAs) released from the dying cancer cells after phototherapy, together with the secretion of damage associated molecular patterns (DAMPs) and various pro-inflammatory cytokines/factors. To amplify these immunological responses induced by phototherapy, various adjuvant nano/micromaterials are introduced to boost the immune system to recognize and kill cancer cells. Moreover, such immune responses are further demonstrated to work in synergy with other immunotherapies such as immune checkpoint blockade (ICB), chimeric antigen receptor (CAR)-T cell and cytokine therapy, achieving significantly increased immune response rates and successful therapeutic outcomes. Here, this minireview will focus on the recent progress in engineering biomaterials for enhanced photoimmunotherapy and discuss the challenges, opportunities and future prospects in this field.

Graphical abstract: Biomaterial-assisted photoimmunotherapy for cancer

Article information

Article type
13 Jul 2020
06 Sep 2020
First published
05 Oct 2020

Biomater. Sci., 2020,8, 5846-5858

Biomaterial-assisted photoimmunotherapy for cancer

M. Chen and Q. Chen, Biomater. Sci., 2020, 8, 5846 DOI: 10.1039/D0BM01154A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity