Issue 10, 2020

Enzyme-free and triple-amplified electrochemical sensing of 8-hydroxy-2′-deoxyguanosine by three kinds of short pDNA-driven catalyzed hairpin assemblies followed by a hybridization chain reaction

Abstract

A sensitive and enzyme-free electrochemical aptasensor was constructed for the sensing of 8-hydroxy-2′-deoxyguanosine (8-OH-dG). In the process of constructing the aptasensor, triple signal amplification strategies were introduced to enhance the sensitivity. First, every aptamer/pDNA complex immobilized on magnetic beads could release three kinds of pDNAs when 8-OH-dG was introduced, which caused three-fold magnification of the target. Second, the released three kinds of pDNAs initiated catalyzed hairpin assembly between two hairpin DNAs (HP1 and HP2) on a gold electrode. Meanwhile, the three kinds of pDNAs were released again by a strand displacement reaction to obtain the next catalyzed hairpin assembly. Third, the emerging toehold of HP2 further induced a hybridization chain reaction (HCR) between two hairpin DNAs (HP3 and HP4), forming a long double-stranded DNA concatemer on the surface of the electrode. Finally, [Ru(NH3)6]3+, an electroactive cation, was adsorbed onto the long dsDNA concatemer by electrostatic interactions and consequently, an electrochemical signal was generated. Under this triple signal amplification, a low detection limit down to 24.34 fM has been obtained for 8-OH-dG determination, which is superior to those of most previously reported methods.

Graphical abstract: Enzyme-free and triple-amplified electrochemical sensing of 8-hydroxy-2′-deoxyguanosine by three kinds of short pDNA-driven catalyzed hairpin assemblies followed by a hybridization chain reaction

Supplementary files

Article information

Article type
Paper
Submitted
04 Feb 2020
Accepted
16 Mar 2020
First published
23 Mar 2020

Analyst, 2020,145, 3605-3611

Enzyme-free and triple-amplified electrochemical sensing of 8-hydroxy-2′-deoxyguanosine by three kinds of short pDNA-driven catalyzed hairpin assemblies followed by a hybridization chain reaction

L. Jia, Z. Feng, R. Zhao, R. Ma, W. Zhang, L. Shang, W. Jia and H. Wang, Analyst, 2020, 145, 3605 DOI: 10.1039/D0AN00233J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements