Issue 6, 2020

An FcεRI-IgE-based genetically encoded microfluidic cell sensor for fast Gram-negative bacterial screening in food samples

Abstract

An FcεRI-IgE-based genetically encoded microfluidic cell sensor was constructed for fast Gram-negative bacterial screening in food samples. CD14-Fcε IgE, produced by the gene engineered antibodies (GEAs) technology, was used for the recognition of the target bacteria or lipopolysaccharide (LPS). Stable cell lines expressing GCaMP6s, a genetically encoded indicator of calcium flux, were first established for monitoring mast cell activation and improving detection sensitivity. The microfluidic system was designed to improve automation and control the reaction time. Once Gram-negative bacteria bound to the CD14-Fcε IgE on the RBL-2H3 cell surface, RBL-2H3 cell receptor (FcεRI)-induced Ca2+ signaling pathway was immediately activated to release Ca2+. The elevated intracellular Ca2+ triggers GCaMP6s for reporting the presence of Gram-negative bacteria. The developed biosensor was able to detect 80 CFU mL−1 Gram-negative bacteria within 2.5 min in pure culture samples. The biosensor was used to detect Gram-negative bacteria in pork samples. With its short screening time and easy operation, the proposed biosensor shows promise in future applications of foodborne pathogen testing in 1 h to 1 day.

Graphical abstract: An FcεRI-IgE-based genetically encoded microfluidic cell sensor for fast Gram-negative bacterial screening in food samples

Supplementary files

Article information

Article type
Paper
Submitted
14 Nov 2019
Accepted
09 Jan 2020
First published
18 Jan 2020

Analyst, 2020,145, 2297-2304

An FcεRI-IgE-based genetically encoded microfluidic cell sensor for fast Gram-negative bacterial screening in food samples

H. Jiang, J. Yang, D. Jiang and X. Sun, Analyst, 2020, 145, 2297 DOI: 10.1039/C9AN02289A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements