Controlled deposition of large-area and highly-ordered thin films: effect of dip-coating-induced morphological evolution on resistive memory performance†
Abstract
Developing a simple, versatile and efficient technique that enables both large-scale production and nano-scale control is highly desirable but very challenging for achieving high-performance organic-based memory electronic devices. Herein, we employed a dip-coating method to fabricate reliable and cost-effective organic memory devices (OMDs). This technique enables us to deposit high-quality, homogeneous and large-area nanopatterns on the surfaces of thin films and realize uniform OMD performances with a record reproducibility up to 96%. To the best of our knowledge, this is the first report on dip-coated OMDs with the highest reproducibility observed to date, which demonstrates the promising versatility of the dip-coating technique to fabricate organic memory devices and its suitability to scale-up for high-throughput solution processing.