Issue 27, 2019

Effects of cobalt substitution on ZnO surface reactivity and electronic structure

Abstract

We have performed scanning probe microscopy investigations of ZnO and Co-substituted ZnO under dark/UV conditions as well as in air and an ultra-high vacuum environment to shine a light on the change in electronic structure and surface reactivity as a consequence of Zn substitution with Co. We have achieved two major results: first, Co substituting Zn atoms significantly downward shifts by about 400 meV the Fermi level, which is close to the conduction band in the as-grown n-type ZnO. Second, a thoroughly novel result, Co substitution strongly reduces the absorption of negative oxygen species (NOS) at the ZnO surface. These two experimental findings are fully explained by a phenomenological model assuming the formation of Co-defect (Co-D) complexes that induce the appearance of an unoccupied impurity band in the ZnO energy gap. NOS play a central role in both the operating principles of UV photodetectors and applications in nanomedicine. Thus, the inhibiting effect of Co-D complexes on NOS formation has many applicative implications since it suggests that defect-engineering procedures might be devised for realizing nano-patterned Co-doped ZnO surfaces with regions showing different surface properties.

Graphical abstract: Effects of cobalt substitution on ZnO surface reactivity and electronic structure

Article information

Article type
Paper
Submitted
07 Dec 2018
Accepted
15 Jun 2019
First published
17 Jun 2019

J. Mater. Chem. C, 2019,7, 8364-8373

Effects of cobalt substitution on ZnO surface reactivity and electronic structure

D. D’Agostino, C. Di Giorgio, F. Bobba, A. Di Trolio, P. Alippi, A. M. Cucolo and A. Amore Bonapasta, J. Mater. Chem. C, 2019, 7, 8364 DOI: 10.1039/C8TC06188B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements