Issue 43, 2019

Light-controllable systems based on TiO2-ZIF-8 composites for targeted drug release: communicating with tumour cells

Abstract

Drug delivery systems based on the zeolitic imidazolate framework ZIF-8 have recently attracted viable research interest owing to their capability of decomposing in acidic media and thus performing targeted drug delivery. In vivo realization of this mechanism faces a challenge of relatively slow decomposition rates, even at elevated acidic conditions that are barely achievable in diseased tissues. In this study we propose to combine drug delivery nanocomposites with a semiconductor photocatalytic agent that would be capable of inducing a local pH gradient in response to external electromagnetic radiation. In order to test this principle, a model drug-releasing nanocomposite comprising photocatalytic titania nanotubes, ZIF-8, and the antitumor drug doxorubicin has been investigated. This system was demonstrated to release the drug in a quantity sufficient for effectively suppressing IMR-32 neuroblastoma cells that were used as a model diseased tissue. With locally applied UV irradiation, this result was achieved within 40 minutes, which is a relatively short time compared to the release duration in systems without photocatalyst, typically taking from several hours to several days.

Graphical abstract: Light-controllable systems based on TiO2-ZIF-8 composites for targeted drug release: communicating with tumour cells

Supplementary files

Article information

Article type
Paper
Submitted
05 Jul 2019
Accepted
02 Oct 2019
First published
03 Oct 2019

J. Mater. Chem. B, 2019,7, 6810-6821

Light-controllable systems based on TiO2-ZIF-8 composites for targeted drug release: communicating with tumour cells

A. Sharsheeva, V. A. Iglin, P. V. Nesterov, O. A. Kuchur, E. Garifullina, E. Hey-Hawkins, S. A. Ulasevich, E. V. Skorb, A. V. Vinogradov and M. I. Morozov, J. Mater. Chem. B, 2019, 7, 6810 DOI: 10.1039/C9TB01377F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements