Issue 13, 2019

Solid-state polymer electrolytes stabilized by task-specific salt additives

Abstract

Solid state electrolytes (SSEs) are actively studied for their potential to markedly enhance the safety and performance features of high-energy rechargeable batteries that utilize reactive metals (Li, Na, etc.) as anodes. Electrochemical cell designs in which the metal anode is coupled with a conventional, intercalating cathode such as lithium nickel cobalt manganese oxide (NCM), lithium cobalt oxide (LCO), or lithium nickel cobalt aluminum oxide (NCA), are of immediate interest both because of gains in specific energy and the inherent simplicity of solid-state battery designs enabled by these electrode chemistries. As a lithium-ion conducting polymer, polyethylene oxide (PEO) is an attractive, low-cost candidate solid polymer electrolyte (SPE) for such cells, but is known to suffer from stability issues at both the anode and cathode of the cell, as well as from sluggish ion transport in the bulk. Here we consider a general approach to create stable SPEs based on PEO by redesigning the salt—as opposed to the more common practice of manipulating the polymer, to achieve SPEs that provide the right balance of transport and stability characteristics to enable solid-state batteries. We show in particular that a trinal salt mixture composed of task-specific components specifically chosen to address the three most stubborn problems of PEO-based SPEs facilitates stable cycling of Li‖LiNi1/3Co1/3Mn1/3O2-NCM (111) cells, with a coulombic efficiency of 99%. Our studies shed light on a potentially new approach for rationally designing the interphases at both the cathode and anode of solid polymer batteries.

Graphical abstract: Solid-state polymer electrolytes stabilized by task-specific salt additives

Supplementary files

Article information

Article type
Paper
Submitted
12 Dec 2018
Accepted
18 Feb 2019
First published
20 Feb 2019

J. Mater. Chem. A, 2019,7, 7823-7830

Solid-state polymer electrolytes stabilized by task-specific salt additives

Q. Zhao, P. Chen, S. Li, X. Liu and L. A. Archer, J. Mater. Chem. A, 2019, 7, 7823 DOI: 10.1039/C8TA12008K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements