Hidden symmetry of the anomalous bluetongue virus capsid and its role in the infection process
Abstract
Clear understanding of the principles that control the arrangement of proteins and their self-assembly into viral shells is very important for the development of antiviral strategies. Here we consider the structural peculiarities and hidden symmetry of the anomalous bluetongue virus (BTV) capsid. Each of its three concentric shells violates the paradigmatic geometrical model of Caspar and Klug, which is otherwise well suited to describe most of the known icosahedral viral shells. As we show, three icosahedral spherical lattices, which are commensurate with each other and possess locally hexagonal (primitive or honeycomb) order, underlie the proteinaceous shells of the BTV capsid. This interpretation of the multishelled envelope allows us to discuss the so-called “symmetry mismatch” between its layers. We also analyze the structural stability of the considered spherical lattices on the basis of the classical theory of spherical packing and relate the proximity of the outer spherical lattice to destabilization with the fact that during infection of the cell VP2 trimers are detached from the surface of the BTV capsid. An electrostatic mechanism that can assist in this detachment is discussed in detail.