Jump to main content
Jump to site search


Self-assembly of spiral patterns in confined systems with competing interactions

Author affiliations

Abstract

Colloidal particles in polymer solutions and functionalized nanoparticles often exhibit short-range attraction coupled with long-range repulsion (SALR) leading to the spontaneous formation of symmetric patterns. Chiral nanostructures formed by thin films of SALR particles have not been reported yet. In this study, we observe striking topological transitions from a symmetric pattern of concentric rings to a chiral structure of a spiral shape, when the system is in hexagonal confinement. We find that the spiral formation can be induced either by breaking the system symmetry with a wedge, or by melting of the rings. In the former case, the chirality of the spiral is determined by the orientation of the wedge and thus can be controlled. In the latter, the spiral arises due to thermally induced defects and is absent in the average particle distribution, which forms highly regular hexagonal patterns in the central part of the system. These hexagonal patterns can be explained by interference of planar density waves. Thermodynamic considerations indicate that equilibrium spirals can appear spontaneously in any stripe-forming system confined in a hexagon with a small wedge, provided that certain conditions are satisfied by a set of phenomenological parameters.

Graphical abstract: Self-assembly of spiral patterns in confined systems with competing interactions

Back to tab navigation

Supplementary files

Publication details

The article was received on 12 Jun 2019, accepted on 19 Jul 2019 and first published on 11 Sep 2019


Article type: Paper
DOI: 10.1039/C9SM01179J
Soft Matter, 2019, Advance Article
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Self-assembly of spiral patterns in confined systems with competing interactions

    J. Pȩkalski, E. Bildanau and A. Ciach, Soft Matter, 2019, Advance Article , DOI: 10.1039/C9SM01179J

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements