Droplet manipulation with polarity-dependent low-voltage electrowetting on an open slippery liquid infused porous surface†
Abstract
This paper reports an open-loop method for highly efficient and precise droplet manipulation with polarity-dependent low-voltage electrowetting on a perfluorinated silane modified slippery liquid infused porous surface (SLIPS) in which a droplet can be driven between individual square electrodes. The electrowetting phenomenon on modified SLIPS was investigated first, and it exhibited an up to 55° contact angle difference with respect to voltage polarity while the threshold voltage was reduced to only 2 V. Then, a coplanar electrode experiment was designed to study the performance of droplet manipulation on several modified SLIPS samples with different vertically placed times and silicon oil viscosities. The optimal condition for preparing a modified SLIPS membrane is that a sample is placed vertically for 2 hours after infusing 10 cSt silicon oil, on which the droplet can be driven with the fastest velocity, and the activation voltage for moving a droplet is only 8 V. Finally, multi-droplet simultaneous and continuous manipulation on modified SLIPS in bi-direction on a loop of square electrodes was achieved. Interestingly, unlike asymmetric electrowetting, actuation methods on a solid insulator and hydrophobic layers, the droplet actuation velocity was not limited by the contact angle saturation effect and always increased with the applied voltage on modified SLIPS. This method achieves a very wide range of droplet continuous manipulation velocities from 0.075 mm s−1 to 123 mm s−1 under 20 V to 500 V applied voltage and the continuous droplet actuation voltage exhibits at least a 15-fold decrease compared to that of an unmodified SLIPS membrane.