Issue 24, 2019

Microdroplet self-propulsion during dropwise condensation on lubricant-infused surfaces

Abstract

Water vapor condensation is common in nature and widely used in industrial applications, including water harvesting, power generation, and desalination. As compared to traditional filmwise condensation, dropwise condensation on lubricant-infused surfaces (LIS) can lead to an order-of-magnitude increase in heat transfer rates. Small droplets (D ≤ 100 μm) account for nearly 85% of the total heat transfer and droplet sweeping plays a crucial role in clearing nucleation sites, allowing for frequent re-nucleation. Here, we focus on the dynamic interplay of microdroplets with the thin lubricant film during water vapor condensation on LIS. Coupling high-speed imaging, optical microscopy, and interferometry, we show that the initially uniform lubricant film re-distributes during condensation. Governed by lubricant height gradients, microdroplets as small as 2 μm in diameter undergo rigorous and gravity-independent self-propulsion, travelling distances multiples of their diameters at velocities up to 1100 μm s−1. Although macroscopically the movement appears to be random, we show that on a microscopic level capillary attraction due to asymmetrical lubricant menisci causes this gravity-independent droplet motion. Based on a lateral force balance analysis, we quantitatively find that the sliding velocity initially increases during movement, but decreases sharply at shorter inter-droplet spacing. The maximum sliding velocity is inversely proportional to the oil viscosity and is strongly dependent of the droplet size, which is in excellent agreement with the experimental observations. This novel and non-traditional droplet movement is expected to significantly enhance the sweeping efficiency during dropwise condensation, leading to higher nucleation and heat transfer rates.

Graphical abstract: Microdroplet self-propulsion during dropwise condensation on lubricant-infused surfaces

Supplementary files

Article information

Article type
Paper
Submitted
09 Mar 2019
Accepted
07 May 2019
First published
08 May 2019

Soft Matter, 2019,15, 4808-4817

Microdroplet self-propulsion during dropwise condensation on lubricant-infused surfaces

J. Sun and P. B. Weisensee, Soft Matter, 2019, 15, 4808 DOI: 10.1039/C9SM00493A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements