Issue 22, 2019

Avalanche statistics during coarsening dynamics

Abstract

We study the coarsening dynamics of a two-dimensional system via numerical simulations. The system under consideration is a biphasic system consisting of domains of a dispersed phase closely packed together in a continuous phase and separated by thin interfaces. Such a system is elastic and typically out of equilibrium. The equilibrium state is attained via the coarsening dynamics, wherein the dispersed phase slowly diffuses through the interfaces, causing the domains to change in size and eventually rearrange abruptly. The effect of rearrangements is propagated throughout the system via the intrinsic elastic interactions and may cause rearrangements elsewhere, resulting in intermittent bursts of activity and avalanche behaviour. Here we aim at quantitatively characterizing the corresponding avalanche statistics (i.e. size, duration, and inter-avalanche time). Despite the coarsening dynamics is triggered by an internal driving mechanism, we find quantitative indications that such avalanche statistics displays scaling-laws very similar to those observed in the response of disordered materials to external loads.

Graphical abstract: Avalanche statistics during coarsening dynamics

Article information

Article type
Paper
Submitted
15 Feb 2019
Accepted
18 Apr 2019
First published
23 Apr 2019

Soft Matter, 2019,15, 4518-4524

Avalanche statistics during coarsening dynamics

F. Pelusi, M. Sbragaglia and R. Benzi, Soft Matter, 2019, 15, 4518 DOI: 10.1039/C9SM00332K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements