Issue 6, 2019

The structure–property relationship in LAPONITE® materials: from Wigner glasses to strong self-healing hydrogels formed by non-covalent interactions

Abstract

Rheology, small-angle X-ray scattering (SAXS), and dynamic light scattering (DLS) analysis, zeta potential measurement, scanning electron microscopy (SEM), and micro-FTIR and absorbance spectroscopy were used to enlighten the controversial literature about LAPONITE® materials. Our data suggest that pristine LAPONITE® in water does not form hydrogels induced by the so-called “house of cards” assembly, but rather forms Wigner glasses governed by repulsive forces. Ionic interactions between anisotropic LAPONITE® nanodiscs, sodium polyacrylate and inorganic salts afforded hydrogels that were transparent, self-standing, moldable, strong, and biocompatible with shear-thinning and self-healing behavior. An extensive study on the role of salts in the gelification process dictates a trend that relates the valence of cations with the viscoelastic properties of the bulk material (G′ values follow the trend, monovalent < divalent < trivalent). These hydrogels present G′ values up to 5.1 × 104 Pa, which are considered high values for non-covalent hydrogels. Hydrogels crosslinked with sodium phosphate salts are biocompatible, and might be valid candidates for injectable drug delivery systems due to their shear-thinning behavior with rapid self-healing after injection.

Graphical abstract: The structure–property relationship in LAPONITE® materials: from Wigner glasses to strong self-healing hydrogels formed by non-covalent interactions

Supplementary files

Article information

Article type
Paper
Submitted
25 Sep 2018
Accepted
08 Nov 2018
First published
08 Nov 2018

Soft Matter, 2019,15, 1278-1289

The structure–property relationship in LAPONITE® materials: from Wigner glasses to strong self-healing hydrogels formed by non-covalent interactions

T. B. Becher, C. B. Braga, D. L. Bertuzzi, M. D. Ramos, A. Hassan, F. N. Crespilho and C. Ornelas, Soft Matter, 2019, 15, 1278 DOI: 10.1039/C8SM01965G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements