Issue 15, 2019

A versatile catalyst system for enantioselective synthesis of 2-substituted 1,4-benzodioxanes

Abstract

We report the synthesis of enantiomerically enriched 1,4-benzodioxanes containing alkyl, aryl, heteroaryl, and/or carbonyl substituents at the 2-position. The starting 1,4-benzodioxines were readily synthesized via ring closing metathesis using an efficient nitro-Grela catalyst at ppm levels. Excellent enantioselectivities of up to 99:1 er were obtained by using the versatile catalyst system [Ir(cod)Cl]2/BIDIME-dimer in the asymmetric hydrogenation of 2-substituted 1,4-benzodioxines. Furthermore, DFT calculations reveal that the selectivity of the process is controlled by the protonation step; and coordinating groups on the substrate may alter the interaction with the catalyst, resulting in a change in the facial selectivity.

Graphical abstract: A versatile catalyst system for enantioselective synthesis of 2-substituted 1,4-benzodioxanes

Supplementary files

Article information

Article type
Edge Article
Submitted
16 Dec 2018
Accepted
12 Mar 2019
First published
13 Mar 2019
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2019,10, 4339-4345

A versatile catalyst system for enantioselective synthesis of 2-substituted 1,4-benzodioxanes

E. Chong, B. Qu, Y. Zhang, Z. P. Cannone, J. C. Leung, S. Tcyrulnikov, K. D. Nguyen, N. Haddad, S. Biswas, X. Hou, K. Kaczanowska, M. Chwalba, A. Tracz, S. Czarnocki, J. J. Song, M. C. Kozlowski and C. H. Senanayake, Chem. Sci., 2019, 10, 4339 DOI: 10.1039/C8SC05612A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements