Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 7, 2019
Previous Article Next Article

Estimating speciation of aqueous ammonia solutions of ammonium bicarbonate: application of least squares methods to infrared spectra

Author affiliations

Abstract

The knowledge of the speciation and of the supersaturation of aqueous solutions of CO2 and NH3 is pivotal for the design and optimization of unit operations, e.g. absorption or crystallization, in the framework of ammonia-based CO2 capture systems. For this information to be available, however, complex analytical techniques and significant experimental effort are required. This work introduces a methodology for the estimation of the concentration of species in aqueous ammonia solutions of ammonium bicarbonate by using attenuated total reflection infrared spectroscopy (ATR-FTIR) and spectral modeling based on least squares methods. In particular, the methodology can be exploited for the on-line monitoring of the liquid composition of crystallizing suspensions of ammonium bicarbonate for which the information on the speciation is combined with a rigorous thermodynamic model to compute the activity-based supersaturation. Finally, this work paves the way for the estimation of the crystallization kinetics of ammonium bicarbonate formation in aqueous ammonia solutions which is of great importance for the design of industrial CO2 capture absorption processes that exploit solid formation.

Graphical abstract: Estimating speciation of aqueous ammonia solutions of ammonium bicarbonate: application of least squares methods to infrared spectra

Back to tab navigation

Supplementary files

Article information


Submitted
27 Mar 2019
Accepted
02 May 2019
First published
14 May 2019

This article is Open Access

React. Chem. Eng., 2019,4, 1284-1302
Article type
Paper

Estimating speciation of aqueous ammonia solutions of ammonium bicarbonate: application of least squares methods to infrared spectra

F. Milella and M. Mazzotti, React. Chem. Eng., 2019, 4, 1284
DOI: 10.1039/C9RE00137A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements