Issue 72, 2019, Issue in Progress

Efficient tri-metallic oxides NiCo2O4/CuO for the oxygen evolution reaction

Abstract

In this study, a simple approach was used to produce nonprecious, earth abundant, stable and environmentally friendly NiCo2O4/CuO composites for the oxygen evolution reaction (OER) in alkaline media. The nanocomposites were prepared by a low temperature aqueous chemical growth method. The morphology of the nanostructures was changed from nanowires to porous structures with the addition of CuO. The NiCo2O4/CuO composite was loaded onto a glassy carbon electrode by the drop casting method. The addition of CuO into NiCo2O4 led to reduction in the onset potential of the OER. Among the composites, 0.5 grams of CuO anchored with NiCo2O4 (sample 2) demonstrated a low onset potential of 1.46 V vs. a reversible hydrogen electrode (RHE). A current density of 10 mA cm−2 was achieved at an over-potential of 230 mV and sample 2 was found to be durable for 35 hours in alkaline media. Electrochemical impedance spectroscopy (EIS) indicated a small charge transfer resistance of 77.46 ohms for sample 2, which further strengthened the OER polarization curves and indicates the favorable OER kinetics. All of the obtained results could encourage the application of sample 2 in water splitting batteries and other energy related applications.

Graphical abstract: Efficient tri-metallic oxides NiCo2O4/CuO for the oxygen evolution reaction

Supplementary files

Article information

Article type
Paper
Submitted
10 Nov 2019
Accepted
11 Dec 2019
First published
20 Dec 2019
This article is Open Access
Creative Commons BY license

RSC Adv., 2019,9, 42387-42394

Efficient tri-metallic oxides NiCo2O4/CuO for the oxygen evolution reaction

A. Q. Mugheri, A. Tahira, U. Aftab, A. L. Bhatti, N. N. Memon, J. Memon, M. I. Abro, A. A. Shah, M. Willander, A. A. Hullio and Z. H. Ibupoto, RSC Adv., 2019, 9, 42387 DOI: 10.1039/C9RA09351F

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements