Issue 69, 2019

Predicting viable isomers of [X,C,N] and [H,X,C,N] (X = Sn, Pb)

Abstract

Metal cyanide/isocyanide and hydrometal cyanide/isocyanide compounds are key metal-carriers in interstellar space. Lighter group 14 elements (X = C/Si/Ge) cyanides/isocyanides and hydrocyanides/hydroisocyanides have been studied theoretically and experimentally. However, no reports are available on the analogues of tin (Sn) and lead (Pb). In this work, we carried out the first theoretical study on the structures and stabilities of [X,C,N] and [H,X,C,N] (X = Sn/Pb) at the CCSD(T)/def2-QZVPP//B3LYP/def2-QZVPP level. Comparisons were made with the lower analogues (X = C/Si/Ge) concerning the structural, energetic and bonding properties. Significantly different from that of c-C2N, a dative-bonded valence structure of c-XCN for heavier X was revealed for the first time, which can account for the rather worse kinetic stability of cyclic [X,C,N] for heavier X = Si/Ge. A unique kind of agostic bonding was found within three isomers of [H,Pb,C,N], whereas it is absent for X = C/Si/Ge/Sn. The computed structural and spectroscopic data could aid future laboratory and astrophysical detection of the [X,C,N] and [H,X,C,N] (X = Sn/Pb) isomers.

Graphical abstract: Predicting viable isomers of [X,C,N] and [H,X,C,N] (X = Sn, Pb)

Supplementary files

Article information

Article type
Paper
Submitted
30 Oct 2019
Accepted
01 Dec 2019
First published
09 Dec 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 40772-40780

Predicting viable isomers of [X,C,N] and [H,X,C,N] (X = Sn, Pb)

Y. Sun, H. Wang and Y. Ding, RSC Adv., 2019, 9, 40772 DOI: 10.1039/C9RA08943H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements