Issue 59, 2019

Low-temperature all-solid-state lithium-ion batteries based on a di-cross-linked starch solid electrolyte

Abstract

The preparation of a low-temperature solid electrolyte is a challenge for the commercialization of the all-solid-state lithium-ion battery (ASSLIB). Here we report a starch-based solid electrolyte that displays phenomenal electrochemical properties below room temperature (RT). The starch host of the electrolyte is synthesized by two cross-linking reactions, which provide sufficient and orderly binding sites for the lithium salt to dissolve. At 25 °C, the solid electrolyte has exceptional ionic conductivity (σ, 3.10 × 10−4 S cm−1), lithium-ion transfer number (t+, 0.82) and decomposition potential (dP, 4.91 V). At −20 °C, it still has outstanding σ (3.10 × 10−5 S cm−1), t+ (0.72) and dP (5.50 V). The LiFePO4 ASSLIB assembled with the electrolyte exhibits unique specific capacity and long cycling life below RT, and the LiNi0.8Co0.1Mn0.1O2 ASSLIB can operate at 4.3 V and 0 °C. This work provides a solution to solve the current challenges of ASSLIBs to widen their scope of applications.

Graphical abstract: Low-temperature all-solid-state lithium-ion batteries based on a di-cross-linked starch solid electrolyte

Supplementary files

Article information

Article type
Paper
Submitted
25 Sep 2019
Accepted
18 Oct 2019
First published
28 Oct 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 34601-34606

Low-temperature all-solid-state lithium-ion batteries based on a di-cross-linked starch solid electrolyte

Z. Lin and J. Liu, RSC Adv., 2019, 9, 34601 DOI: 10.1039/C9RA07781B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements