Jump to main content
Jump to site search

Issue 60, 2019
Previous Article Next Article

Adsorption–desorption behavior of carbendazim by sewage sludge-derived biochar and its possible mechanism

Author affiliations

Abstract

Biochar application in agricultural soil for environmental remediation has received increasing attention, however, few studies are focused on sewage sludge based biochar. The present study evaluated the effect of raw sewage sludge and sewage sludge based biochars produced at different pyrolysis temperatures (100–700 °C) on the adsorption–desorption of carbendazim in soil. Sewage sludge derived biochar significantly enhanced the sorption affinity and limited the desorption capacity of the soil for carbendazim. A maximum removal efficiency of 98.9% and a greatest value of 144.05 ± 0.32 μg g−1 sorption capacity occurred in soil amended with biochar pyrolyzed at 700 °C (BC700). As the pyrolysis temperature and the amendment rate of biochars increased, the sorption of carbendazim was promoted and desorption was further inhibited. The adsorption–desorption hysteresis index of carbendazim was consistently higher in soils amended with biochars (>0.85) than in the unamended soil (0.42–0.68), implying that carbendazim could be immobilized in soil amended with sewage sludge derived biochars. The partition effect was dominant in the sorption process for carbendazim in the biochar–soil mixtures. This study will be helpful for the disposal of sewage sludge and its utilization, and it is the first report for the study the sorption–desorption process of carbendazim in soil amended with sewage sludge derived biochar. Furthermore, these findings may be also useful for understanding the distribution and transport of carbendazim in the environment and will be of great significance in remediation strategies for contaminated soil.

Graphical abstract: Adsorption–desorption behavior of carbendazim by sewage sludge-derived biochar and its possible mechanism

Back to tab navigation

Supplementary files

Article information


Submitted
10 Sep 2019
Accepted
24 Oct 2019
First published
31 Oct 2019

This article is Open Access

RSC Adv., 2019,9, 35209-35216
Article type
Paper

Adsorption–desorption behavior of carbendazim by sewage sludge-derived biochar and its possible mechanism

T. Ding, T. Huang, Z. Wu, W. Li, K. Guo and J. Li, RSC Adv., 2019, 9, 35209
DOI: 10.1039/C9RA07263B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements