Issue 57, 2019

In situ K2S activated electrospun carbon nanofibers with hierarchical meso/microporous structures for supercapacitors

Abstract

Porous electrospun carbon nanofibers (CNFs) can be produced by a more advantageous ‘in situ activation’ method by electrospinning polyacrylonitrile (PAN) with an activation agent. However, most in situ activated electrospinning processes yield porous CNFs with rather limited surface area and less porosity due to the inappropriately selected activation agents. Here we found K2S could perfectly meet both compatibility and reactivity requirements of PAN electrospinning to generate hierarchical meso/micropores inside electrospun CNFs. During the whole fabrication process, K2S experiences a phase evolution loop and the hierarchical pore structures are formed by the reaction between K2S oxidative derivatives and the as-formed carbon during heat treatment. The hierarchical meso/microporous CNFs not only showed a large surface area (835.0 m2 g−1) but also exhibited a high PAN carbonization yield (84.0 wt%) due to improved cyclization of PAN's nitrile group during the pre-oxidation stage. As an electrode material for supercapacitors, the corresponding electrodes have a capacitance of 210.7 F g−1 at the current density of 0.2 A g−1 with excellent cycling durability. The hierarchically porous CNFs produced via in situ activation by K2S combine the advantages of interconnected meso/micropores and are a promising candidate for electrochemical energy conversion and storage devices.

Graphical abstract: In situ K2S activated electrospun carbon nanofibers with hierarchical meso/microporous structures for supercapacitors

Supplementary files

Article information

Article type
Paper
Submitted
29 Aug 2019
Accepted
10 Oct 2019
First published
18 Oct 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 33539-33548

In situ K2S activated electrospun carbon nanofibers with hierarchical meso/microporous structures for supercapacitors

H. Liu, W. Song and A. Xing, RSC Adv., 2019, 9, 33539 DOI: 10.1039/C9RA06847C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements