Jump to main content
Jump to site search

Issue 54, 2019
Previous Article Next Article

Theoretical prediction of some layered Pa2O5 phases: structure and properties

Author affiliations

Abstract

Density functional theory (DFT) was used to predict and study protactinium pentoxide (Pa2O5), which presents a fluorite and layered protactinium oxide-type structure. Although the layered structure has been observed with the isostructural transition Nb and Ta metal pentoxides experimentally, the detailed structure and properties of the layered Pa2O5 are not clear and understandable. Our theoretical prediction explored some possible stable structures of the Pa2O5 stoichiometry according to the existing M2O5 structures (where M is an actinide Np or transition Nb, Ta, and V metal) and replacing the M ions with protactinium ions. The structural, mechanical, thermodynamic and electronic properties including lattice parameters, bulk moduli, elastic constants, entropy and band gaps were predicted for all the simulated structures. Pa2O5 in the β-V2O5 structure was found to be a competitive structure in terms of stability, whereas Pa2O5 in the ζ-Nb2O5 structure was found to be the most stable overall. This is consistent with Sellers's experimental observations. In particular, Pa2O5 in the ζ-Nb2O5 structure is predicted to be charge-transfer insulators. Furthermore, we predict that ζ-Nb2O5-structured Pa2O5 is the most thermodynamically stable under ambient conditions and pressure.

Graphical abstract: Theoretical prediction of some layered Pa2O5 phases: structure and properties

Back to tab navigation

Supplementary files

Publication details

The article was received on 26 Aug 2019, accepted on 19 Sep 2019 and first published on 02 Oct 2019


Article type: Paper
DOI: 10.1039/C9RA06735C
RSC Adv., 2019,9, 31398-31405
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Theoretical prediction of some layered Pa2O5 phases: structure and properties

    T. Liu, S. Li, T. Gao and B. Ao, RSC Adv., 2019, 9, 31398
    DOI: 10.1039/C9RA06735C

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements