Issue 46, 2019, Issue in Progress

Promotion of Pt/CeO2 catalyst by hydrogen treatment for low-temperature CO oxidation

Abstract

Low temperature CO oxidation reaction is known to be facilitated over platinum supported on a reducible cerium oxide. Pt species act as binding sites for reactant CO molecules, and oxygen vacancies on surface of cerium oxide atomically activate the reactant O2 molecules. However, the impacts of size of Pt species and concentration of oxygen vacancy at the surface of cerium oxide on the CO oxidation reaction have not been clearly distinguished, thereby various diverse approaches have been suggested to date. Here using the co-precipitation method we have prepared pure ceria support and infiltrated it with Pt solution to obtain 0.5 atomic% Pt supported on cerium oxide catalyst, and then systematically varied the size of Pt from single atom to ∼1.7 nm sized nanoparticles and oxygen vacancy concentration at surface of cerium oxide by controlling the heat-treatment conditions, which are temperature and oxygen partial pressure. It is found that Pt nanoparticles in range of 1–1.7 nm achieve 100% of CO oxidation reaction at ∼100 °C lower temperature compared to Pt single atom owing to the facile adsorption of CO but weaker binding strength between Pt and CO molecules, and the oxygen vacancy in the vicinity of Pt accelerates CO oxidation below 150 °C. Based on this understanding, we show that a simple hydrogen reduction at 550 °C for the single atom Pt supported on CeO2 catalyst induces the formation of highly dispersed Pt nanoparticles with size of 1.7 ± 0.2 nm and the higher concentration of surface oxygen vacancies simultaneously, enabling 100% conversion from CO to CO2 at 200 °C as well as 16% conversion even at 150 °C owing to the synergistic effects of Pt nanoparticles and oxygen vacancies.

Graphical abstract: Promotion of Pt/CeO2 catalyst by hydrogen treatment for low-temperature CO oxidation

Supplementary files

Article information

Article type
Paper
Submitted
01 Aug 2019
Accepted
21 Aug 2019
First published
28 Aug 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 27002-27012

Promotion of Pt/CeO2 catalyst by hydrogen treatment for low-temperature CO oxidation

A. Jan, J. Shin, J. Ahn, S. Yang, K. J. Yoon, J. Son, H. Kim, J. Lee and H. Ji, RSC Adv., 2019, 9, 27002 DOI: 10.1039/C9RA05965B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements