Issue 46, 2019, Issue in Progress

Inhibition of miR-16 enhances the sensitivity of fibroblast-like synovial cells to methotrexate by restraining MDR1/P-gp expression via NF-κB pathway

Abstract

MicroRNAs (miRNAs) are demonstrated to contribute to the regulation of drug resistance in a number of diseases. Nevertheless, little is known about the role and the underlying mechanism of miR-16 in rheumatoid arthritis (RA) methotrexate resistance. In this study, we firstly examined the miR-16 expression in the serum and synovial fluid from RA patients who were unresponsive to methotrexate monotherapy (UR-MTX patients) and responsive RA patients (R-MTX patients). Secondly, the miR-16 expression was measured in both fibroblast-like synovial cells (FLS) and methotrexate resistance RA-FLS cells (FLS-MTX). FLS cells used in this study were isolated from synovial tissue specimens obtained from patients with RA who underwent total joint replacement. FLS-MTX cells were conducted by gradually increasing the concentration of methotrexate in the medium. The construction of FLS-MTX cells was confirmed by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay. Thirdly, in order to further investigate the role of miR-16 in FLS-MTX cells, we introduced miR-16 inhibitor into FLS-MTX cells to knockdown the expression of miR-16, used fluorescence quantitative PCR to detect the inhibition efficiency. The effects of miR-16 inhibition on cell viability, cell cycle arrest and apoptosis in FLS-MTX cells were monitored with MTT and flow cytometry analysis, respectively. And the regulation of miR-16 on P-glycoprotein (P-gp) was performed using qRT-PCR, western blotting, and immunofluorescence staining. Fourthly, ammonium pyrrolidinedithiocarbamate (PDTC), a NF-κB pathway inhibitor, was applied to verify the mechanism by which miR-16 involved in to regulate the P-gp expression, and thus contributing to the methotrexate resistance in FLS-MTX cells. MiR-16 was upregulated in the in serum and synovial fluid from UR-MTX patients as well as in FLS-MTX cells. Inhibition of miR-16 re-sensitized the FLS-MTX cells to methotrexate by suppressing the cell viability, cell promoting cycle arrest at G0/G1 phase and enhancing apoptosis. Knockdown of miR-16 significantly reduced MDR1 mRNA expression and P-gp protein expression in FLS-MTX cells. Furthermore, inhibition of NF-κB pathway by PDTC reinforced the effect of miR-16 knockdown on P-gp expression, cell viability, cell cycle arrest and apoptosis. In conclusion, our study illustrated that inhibition of miR-16 in FLS-MTX cells alleviated methotrexate resistance by inhibiting MDR1/P-gp expression through inactivation of the NF-κB pathway.

Graphical abstract: Inhibition of miR-16 enhances the sensitivity of fibroblast-like synovial cells to methotrexate by restraining MDR1/P-gp expression via NF-κB pathway

Supplementary files

Article information

Article type
Paper
Submitted
02 Jul 2019
Accepted
16 Aug 2019
First published
27 Aug 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 26619-26627

Inhibition of miR-16 enhances the sensitivity of fibroblast-like synovial cells to methotrexate by restraining MDR1/P-gp expression via NF-κB pathway

J. Wang, N. Mao, Y. Liu, X. Xie, J. Tian, F. Li and J. Chen, RSC Adv., 2019, 9, 26619 DOI: 10.1039/C9RA04991F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements