Issue 48, 2019, Issue in Progress

Effects of acid and phosphate on arsenic solidification in a phosphogypsum-based cement backfill process

Abstract

Phosphogypsum (PG) produced during phosphoric acid production contains significant amounts of arsenic and can potentially cause adverse environmental and health effects. Cement backfill technology is an effective management technique that is used to store PG to prevent such problems. The goal of this paper is to study the influencing factors and mechanism of arsenic stabilization in a PG-based cement backfill process. First, a leaching toxicity test was conducted, which showed that the arsenic concentration in PG batches ranged from 129.1 μg L−1 to 407.1 μg L−1, which were all far above the standard limit (10 μg L−1) set by GB/T 14848-93. In addition, the arsenic content was higher in samples with larger PG particles. Secondly, hydrogen and phosphate ions were added to the backfill to investigate how they influenced arsenic solidification, and the results indicated that phosphate ions, rather than hydrogen ions, delayed the arsenic solidification process. This suggests that controlling the soluble phosphate in PG will help reduce arsenic pollution during backfilling. A toxicity leaching test was carried out after backfill samples were cured for 28 d. All arsenic concentrations were below the standard limit, indicating that the cement backfill technology ensured the long-term solidification and stabilization of arsenic.

Graphical abstract: Effects of acid and phosphate on arsenic solidification in a phosphogypsum-based cement backfill process

Supplementary files

Article information

Article type
Paper
Submitted
20 Jun 2019
Accepted
30 Aug 2019
First published
06 Sep 2019
This article is Open Access
Creative Commons BY license

RSC Adv., 2019,9, 28095-28101

Effects of acid and phosphate on arsenic solidification in a phosphogypsum-based cement backfill process

T. Yin, R. Yang, J. Du and Y. Shi, RSC Adv., 2019, 9, 28095 DOI: 10.1039/C9RA04624K

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements