Issue 43, 2019

Strain induced valley degeneracy: a route to the enhancement of thermoelectric properties of monolayer WS2

Abstract

Two-dimensional transition metal dichalcogenides show great potential as promising thermoelectric materials due to their lower dimensionality, the unique density of states and quantum confinement of carriers. Here the effects of mechanical strain on the thermoelectric performances of monolayer WS2 have been investigated using density functional theory associated with semiclassical Boltzmann transport theory. The variation of the Seebeck coefficient and band gap with applied strain has followed the same type of trend. For n-type material the relaxation time scaled power factor (S2σ/τ) increases by the application of compressive strain whereas for p-type material it increases with the application of tensile strain due to valley degeneracy. A 77% increase in the power factor has been observed for the n-type material by the application of uniaxial compressive strain. A decrease in lattice thermal conductivity with the increase in temperature causes an almost 40% increase in ZT product under applied uniaxial compressive strain. From the study, it is observed that uniaxial compressive strain is more effective among all types of strain to enhance the thermoelectric performance of monolayer WS2. Such strain induced enhancement of thermoelectric properties in monolayer WS2 could open a new window for the fabrication of high-quality thermoelectric devices.

Graphical abstract: Strain induced valley degeneracy: a route to the enhancement of thermoelectric properties of monolayer WS2

Supplementary files

Article information

Article type
Paper
Submitted
14 Jun 2019
Accepted
05 Aug 2019
First published
13 Aug 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 25216-25224

Strain induced valley degeneracy: a route to the enhancement of thermoelectric properties of monolayer WS2

J. Bera and S. Sahu, RSC Adv., 2019, 9, 25216 DOI: 10.1039/C9RA04470A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements