Issue 41, 2019, Issue in Progress

The relationship between activation–passivation transition and grain boundary dissolution on four steel samples in acidic solutions containing NO2

Abstract

Herein, for four steels (L80, N80, X65 and Q235) in acidic solutions (HNO3, HCl, HAc and CO2) containing NO2, the relationship between the activation–passivation (A–P) transition and the grain boundary dissolution (GBD) was studied by potentiodynamic polarization curve (PPC) measurements and scanning electron microscopy (SEM) observations. In the specific pH range of acidic solutions, where the four steels showed an electrochemical characteristic of the A–P transition, GBD was observed on the steel surface; however, at low or high pH values of the acidic solutions, the four steels respectively showed the electrochemical behavior of activation (A) or self-passivation (sP), and GBD was not observed on the steel surface. The effects of the acid type, pH value and steel type on the electrochemical characteristic of the A–P transition and the occurrence of GBD were also discussed in detail. Via this study, it was confirmed that under the electrochemical characteristic of the A–P transition, the occurrence of GBD was a general corrosion behavior of carbon steels and alloy steels in acidic solutions containing NO2.

Graphical abstract: The relationship between activation–passivation transition and grain boundary dissolution on four steel samples in acidic solutions containing NO2−

Article information

Article type
Paper
Submitted
26 May 2019
Accepted
15 Jul 2019
First published
30 Jul 2019
This article is Open Access
Creative Commons BY license

RSC Adv., 2019,9, 23589-23597

The relationship between activation–passivation transition and grain boundary dissolution on four steel samples in acidic solutions containing NO2

Y. Zhou, P. Zhang, J. Xiong and F. Yan, RSC Adv., 2019, 9, 23589 DOI: 10.1039/C9RA03983J

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements