Issue 38, 2019

Nitrogen self-doped activated carbons via the direct activation of Samanea saman leaves for high energy density supercapacitors

Abstract

In this study, nitrogen self-doped activated carbons (ACs) obtained via the direct activation of Samanea saman green leaves (SSLs) for high energy density supercapacitors were investigated. The SSL-derived direct-activated carbons (hereinafter referred to SD-ACs) were synthesized by impregnating sodium hydroxide as an activating agent and heating up to 720 °C without a hydrothermal carbonization or pyrolysis step. The optimum condition was investigated by varying the weight ratio of raw SSLs to NaOH. Surpassing the ACs derived from the two-step convention method, SD-ACs showed superior properties, including a higher surface area (2930 m2 g−1), total pore volume (1.37 cm3 g−1) and nitrogen content (4.6 at%). Moreover, SD-ACs exhibited enhanced electrochemical properties with specific gravimetric and volumetric capacitances of 179 F g−1 and 88 F cm−3 in an organic electrolyte, respectively, a high capacitance retention of approximately 87% at a current density of 0.5 A g−1 and excellent cycling stability of 97.5% after 3000 cycles at a current density of 5 A g−1. Moreover, the potential window of the supercapacitor cell was extended to 3.5 V with a significantly enhanced energy density of up to 79 W h kg−1. These results demonstrate that the direct activation of nitrogen-enriched SSLs offers advantages in terms of simplicity, low-cost and sustainable synthetic route to achieve nitrogen self-doped ACs for high energy density supercapacitors, which exhibit superior properties to that of ACs prepared via the conventional method.

Graphical abstract: Nitrogen self-doped activated carbons via the direct activation of Samanea saman leaves for high energy density supercapacitors

Supplementary files

Article information

Article type
Paper
Submitted
07 May 2019
Accepted
20 Jun 2019
First published
12 Jul 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 21724-21732

Nitrogen self-doped activated carbons via the direct activation of Samanea saman leaves for high energy density supercapacitors

V. Sattayarut, T. Wanchaem, P. Ukkakimapan, V. Yordsri, P. Dulyaseree, M. Phonyiem, M. Obata, M. Fujishige, K. Takeuchi, W. Wongwiriyapan and M. Endo, RSC Adv., 2019, 9, 21724 DOI: 10.1039/C9RA03437D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements