Issue 33, 2019

Monometallic and bimetallic Cu–Ag MOF/MCM-41 composites: structural characterization and catalytic activity

Abstract

Monometallic and bimetallic MOF/MCM-41 composites (Cu, Ag and Cu–Ag) were synthesized via a solvothermal method. The synthesized composites were characterized by XRD, FTIR, SEM, EDX and BET surface area measurements. The acidity was determined through two techniques; potentiometric titration with n-butyl amine for determining the strength and the total number of acid sites and FTIR spectra of chemisorbed pyridine on the surface of MOFs for determining the type of acid sites (Brønsted and/or Lewis). All the prepared MOFs showed Lewis-acid sites and the higher acidity was observed for the bimetallic Cu–Ag MOF/MCM-41 composite. The catalytic activity was examined on the synthesis of 1-amidoalkyl-2-naphthol via the reaction of benzaldehyde, 2-naphthol and benzamide. The best yield (92.86%) was obtained in the least time (10 min) with a molar ratio 1.2 : 1.2 : 1.7 of benzaldehyde : β-naphthol : benzamide and 0.1 g bimetallic Cu–Ag MOF/MCM-41 composite under solvent-free conditions at 130 °C. Reuse of the catalysts showed that they could be used at least four times without any reduction in the catalytic activity.

Graphical abstract: Monometallic and bimetallic Cu–Ag MOF/MCM-41 composites: structural characterization and catalytic activity

Article information

Article type
Paper
Submitted
03 May 2019
Accepted
07 Jun 2019
First published
14 Jun 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 18803-18813

Monometallic and bimetallic Cu–Ag MOF/MCM-41 composites: structural characterization and catalytic activity

W. S. A. El-Yazeed and A. I. Ahmed, RSC Adv., 2019, 9, 18803 DOI: 10.1039/C9RA03310F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements