Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 36, 2019, Issue in Progress
Previous Article Next Article

QM/MM studies on luminescence mechanism of dinuclear copper iodide complexes with thermally activated delayed fluorescence

Author affiliations

Abstract

The QM/MM method is employed to investigate the photophysical mechanism of two dinuclear copper iodide complexes with thermally activated delayed fluorescence (TADF). The S1–T1 energy differences (ΔEST) in these two complexes are small enough so that repopulating the S1 state from T1 becomes energetically allowed. Both forward and reverse intersystem crossing (ISC and rISC) processes are much faster than the corresponding radiative fluorescence and phosphorescence processes [kISC (108 s−1) > kFr (106 s−1), krISC (105 s−1) > kPr (103 s−1)]. The faster rISC process than the phosphorescence emission enables TADF. Moreover, the diphosphine ligands are found to play an important role in regulating the electronic structures and thereto the radiative and nonradiative rate constants. The present work rationalizes experimental phenomena and helps understand the intrinsic luminescence properties. The obtained insights could be useful for tuning the luminescence performance of dicopper-based luminescence materials.

Graphical abstract: QM/MM studies on luminescence mechanism of dinuclear copper iodide complexes with thermally activated delayed fluorescence

Back to tab navigation

Supplementary files

Article information


Submitted
24 Mar 2019
Accepted
21 Jun 2019
First published
03 Jul 2019

This article is Open Access

RSC Adv., 2019,9, 20786-20795
Article type
Paper

QM/MM studies on luminescence mechanism of dinuclear copper iodide complexes with thermally activated delayed fluorescence

Q. Wang, Y. Gao, T. Zhang, J. Han and G. Cui, RSC Adv., 2019, 9, 20786
DOI: 10.1039/C9RA02256B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements