Issue 65, 2019, Issue in Progress

Rotational dynamics of the organic bridging linkers in metal–organic frameworks and their substituent effects on the rotational energy barrier

Abstract

Organic bridging linkers or ligands play an important role in gas and fuel storage, CO2 capture, and controlling the radical polymerization reactions in metal–organic frameworks (MOFs) nanochannels. The rotation of the linkers causes the expansion of the pore size and pore volume in MOFs. To understand the rotational behavior of organic linkers in MOFs and the substituent effects of the linkers, we investigated the equilibrium structure, stability, potential energy curves (PECs), and rotational energy barriers of the organic bridging linkers of a series of MOF model systems imposing three constrained imaginary planes. Both the dispersion-uncorrected and dispersion-corrected density functional theory (DFT and DFT-D i.e. B3LYP and B3LYP-D3) methods with the correlation consistent double-ζ quality basis sets have been applied to study the model MOF systems [Cu4(X)(Y)6(NH3)4] (where X = organic bridging linker, and Y = HCO2). The present study found that the structural parameters and rotational energy barrier of the model MOF containing 1,4-benzendicarboxylate (BDC) linker are in accord with previous experiments. This study reveals that rotational barriers significantly differ depending on the substituents of organic linkers, and the linker dynamical rotation provides information about the framework flexibility with various potential applications in porous materials science. Changing the linkers in the MOFs could be helpful for designing various new kinds of flexible MOFs which will have many important applications in gas storage and separation, catalysis, polymerization, sensing, etc.

Graphical abstract: Rotational dynamics of the organic bridging linkers in metal–organic frameworks and their substituent effects on the rotational energy barrier

Supplementary files

Article information

Article type
Paper
Submitted
20 Feb 2019
Accepted
11 Nov 2019
First published
21 Nov 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 38137-38147

Rotational dynamics of the organic bridging linkers in metal–organic frameworks and their substituent effects on the rotational energy barrier

S. Pakhira, RSC Adv., 2019, 9, 38137 DOI: 10.1039/C9RA01288E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements