Issue 18, 2019, Issue in Progress

Accelerated biodegradation of PLA/PHB-blended nonwovens by a microbial community

Abstract

In this study, the accelerated biodegradation of PLA/PHB (polylactic acid/polyhydroxybutyrate)-blended nonwovens was investigated in the presence of a microbial community. The PLA/PHB-blended nonwovens were buried in natural soil for 56 days, with soil samples collected for subsequent bacterial community domestication. The tensile strength and elongation at break of the PLA/PHB-blended nonwovens as well as the CO2 generated by the Gen III and natural soil communities were determined to assess the degradation rates of the polymer samples. After incubation for 15 days with the Gen III soil bacterial suspension, the surfaces and fibrous structure of nonwovens and the fibers within the nonwovens exhibited distinct changes. In addition, the amount of EvCO2 reached 566.79 mg, the tensile strength decreased from 10.95 ± 0.7 to 2.57 ± 0.31 MPa, a loss of 77%, and the elongation at break changed from 5.32 ± 0.45 to 7.07 ± 1.04%. The 16S rRNA pyrosequencing results showed that Proteobacteria and Firmicutes were the 2 most important bacterial phyla in the Gen III community, accounting for 80.4 and 19.4% of the total classified sequences, respectively. The results of this study demonstrate that compared to a natural soil microbial community, the domesticated strains in the Gen III community, especially members of the phyla Proteobacteria and Firmicutes, are useful in accelerating the degradation of PLA/PHB-blended nonwovens.

Graphical abstract: Accelerated biodegradation of PLA/PHB-blended nonwovens by a microbial community

Supplementary files

Article information

Article type
Paper
Submitted
27 Dec 2018
Accepted
28 Mar 2019
First published
02 Apr 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 10386-10394

Accelerated biodegradation of PLA/PHB-blended nonwovens by a microbial community

Y. Liu, Z. Zhan, H. Ye, X. Lin, Y. Yan and Y. Zhang, RSC Adv., 2019, 9, 10386 DOI: 10.1039/C8RA10591J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements