Jump to main content
Jump to site search


Ca3La2Te2O12:Mn4+,Nd3+,Yb3+: an efficient thermally-stable UV/visible–far red/NIR broadband spectral converter for c-Si solar cells and plant-growth LEDs

Author affiliations

Abstract

A series of novel Mn4+,Nd3+,Yb3+-doped Ca3La2Te2O12 (CLTO) phosphors were prepared by substituting Te6+ for W6+ in the Ca3La2W2O12 compound using a high-temperature solid-state reaction method. A Mn4+ singly-doped CLTO phosphor (CLTO:0.004Mn4+) showed a bright deep red-light emission corresponding to a narrow band around 707 nm (14 144 cm−1) due to a Mn4+ 2Eg4A2g spin-forbidden transition upon 365 nm UV excitation, which largely overlapped the absorption spectrum of plant phytochrome Pfr. The excitation spectrum (λem = 707 nm) presented a broad band ranging from 250 nm (40 000 cm−1) to 600 nm (16 667 cm−1), which can be decomposed into four Gaussian bands peaking at 318 nm (31 431 cm−1), 355 nm (28 148 cm−1), 410 nm (24 385 cm−1), and 476 nm (20 992 cm−1), corresponding to a Mn4+–O2− charge transfer (CT) transition, and Mn4+ transitions 4T1g4A2g, 2T2g4A2g and 4T2g4A2g, respectively. Moreover, three kinds of Mn4+ emission sites were analyzed with the assistance of time-resolved spectra. With the single incorporation of Nd3+/Yb3+ into CLTO:Mn4+, energy transfer phenomena from Mn4+ to Nd3+/Yb3+ ions can be observed, which proceeded via non-radiative resonant and phonon-assisted mechanisms, respectively, resulting in the broadband spectral conversion of the UV/blue to NIR light. When Nd3+ and Yb3+ were co-doped into CLTO:Mn4+ to form the tri-doped CLTO phosphors, a successive energy transfer process, Mn4+ → Nd3+ → Yb3+, was determined based on the simultaneous energy transfer processes Mn4+ → Nd3+ and Nd3+ → Yb3+ in the co-doped samples, further enhancing the broadband spectral conversion process of the UV/blue to NIR region, which can be absorbed by photosynthetic bacteria and show high response when applied to c-Si solar cells. More attractively, the luminescence thermal stabilities of both CLTO:0.004Mn4+ and CLTO:0.004Mn4+,0.04Nd3+,0.20Yb3+ showed excellent performance, and the temperature-dependent luminescence properties of the Mn4+,Nd3+,Yb3+ tri-doped materials have been investigated for the first time. These results indicate that this kind of phosphor can be potentially applied to improving spectral conversion efficiency for c-Si solar cells and plant-growth far-red/NIR LEDs. In addition, this report provides a strategy wherein hosts for Mn4+ doping can be well enriched by substituting Te6+ for W6+ in certain tungstate compounds, which is highly desired in searching for novel red-emitting phosphors.

Graphical abstract: Ca3La2Te2O12:Mn4+,Nd3+,Yb3+: an efficient thermally-stable UV/visible–far red/NIR broadband spectral converter for c-Si solar cells and plant-growth LEDs

Back to tab navigation

Supplementary files

Publication details

The article was received on 24 Nov 2018, accepted on 19 Dec 2018 and first published on 20 Dec 2018


Article type: Research Article
DOI: 10.1039/C8QM00603B
Citation: Mater. Chem. Front., 2019, Advance Article
  •   Request permissions

    Ca3La2Te2O12:Mn4+,Nd3+,Yb3+: an efficient thermally-stable UV/visible–far red/NIR broadband spectral converter for c-Si solar cells and plant-growth LEDs

    K. Li and R. Van Deun, Mater. Chem. Front., 2019, Advance Article , DOI: 10.1039/C8QM00603B

Search articles by author

Spotlight

Advertisements