Issue 14, 2019

Sustainable and rapidly degradable poly(butylene carbonate-co-cyclohexanedicarboxylate): influence of composition on its crystallization, mechanical and barrier properties

Abstract

Aliphatic polycarbonates are an attractive research subject in the field of degradable materials. However, their relatively poor thermal properties limit their application. Here, poly(butylene carbonate) (PBC) was modified with 1,4-cyclohexanedicarboxylic acid (CHDA), a biomass-derived aliphatic ring monomer. Thermal degradation of short butylene carbonate segments was effectively avoided by one-step melt polycondensation of the oligomers. All the PBCCEs were random copolymers, and the trans content of CHDA in all cases was no less than 90%; this ensured the crystallizability of the butylene cyclohexanedicarboxylate (BCE) units. The glass transition temperature, melting temperature and thermal stability increased with the number of BCE units. The PBCCEs were semi-crystalline after thermal equilibrium was reached, and PBCCE50 to PBCCE90 contained PBCE crystals while PBCCE20 possessed XRD diffraction peaks similar to those of PBC. Small-angle X-ray scattering suggested that the randomly oriented lamellar structure of the PBCCEs became more ordered as the number of BCE units increased. PBCCE70-PBCE revealed a t1/2 of less than 30 s, indicating the rapid crystallization rate of the BCE units. The mechanical properties were closely related to the crystallization ability, and PBCCE50 to PBCCE90 showed good elastic moduli (87 to 520 MPa), high tensile strengths (22.8 to 39.5 MPa) and large elongations at break (930% to 413%). The gas barrier properties gradually increased with the number of BCE units, showing results several times higher than those of commercial poly(butylene adipate-co-terephthalate) (PBAT). Moreover, the addition of aliphatic rings slightly weakened the biodegradability, and obvious weight loss could be observed for PBCCE70. This result was higher than those of most aliphatic-aromatic copolyesters, which are degradable when their aromatic diacid content is less than 60%. PBCCE50 displayed a weight loss greater than 90% after 30 days, which is much faster than that of PBC. The results of this study indicate that PBCCE copolyesters exhibit great potential for applications in the plastics industry, such as green packaging and tissue engineering.

Graphical abstract: Sustainable and rapidly degradable poly(butylene carbonate-co-cyclohexanedicarboxylate): influence of composition on its crystallization, mechanical and barrier properties

Supplementary files

Article information

Article type
Paper
Submitted
18 Jan 2019
Accepted
20 Feb 2019
First published
21 Feb 2019

Polym. Chem., 2019,10, 1812-1822

Sustainable and rapidly degradable poly(butylene carbonate-co-cyclohexanedicarboxylate): influence of composition on its crystallization, mechanical and barrier properties

H. Hu, R. Zhang, W. B. Ying, L. Shi, C. Yao, Z. Kong, K. Wang, J. Wang and J. Zhu, Polym. Chem., 2019, 10, 1812 DOI: 10.1039/C9PY00083F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements