Issue 10, 2019

Thermoset elastomers covalently crosslinked by hard nanodomains of triblock copolymers derived from carvomenthide and lactide: tunable strength and hydrolytic degradability

Abstract

A hydrolytically degradable and mechanically reinforced thermoset elastomer system using plant-derived monomers was developed via three synthetic steps in one pot and a subsequent thermal curing process. First, through consecutive controlled ring-opening polymerization reactions, hydroxyl-terminated poly(carvomenthide) (–PCM–OH)2 homopolymers with desirable elastomeric properties were precisely prepared with target values of 10, 12, 14, and 16 kg mol−1 and were subsequently block-copolymerized with D,L-lactide (LA) for mechanical enhancement and degradability to synthesize hydroxyl-terminated poly(lactide)–poly(carvomenthide)–poly(lactide) (–PCM–PLA–OH)2 triblocks (total Mn = ∼20 kg mol−1). Second, the resulting triblock diols were functionalized by post-polymerization esterification using an organic acid anhydride to give thermoplastic carboxy-telechelic (–PCM–PLA–COOH)2 polyesters as thermoset precursors, having fPLA values of 0.20, 0.30, 0.40, and 0.45. Finally, the thermoset processing of the PLA hard domains was performed with multifunctional aziridine to yield crosslinked XL–(PLA–PCM–PLA) elastomers having gel fractions above 95%. The high thermal stability, well-defined microphase-separated morphology, superior and tunable mechanical strength, and controlled hydrolytic degradability were systematically investigated, when compared to those of the triblock prepolymers. The hard domain crosslinked thermoset elastomers with tunable mechanical strength and degradation capability can be practical candidates for sustainable elastomers to satisfy distinct and high-performance applications.

Graphical abstract: Thermoset elastomers covalently crosslinked by hard nanodomains of triblock copolymers derived from carvomenthide and lactide: tunable strength and hydrolytic degradability

Supplementary files

Article information

Article type
Paper
Submitted
12 Dec 2018
Accepted
25 Jan 2019
First published
06 Feb 2019

Polym. Chem., 2019,10, 1245-1257

Thermoset elastomers covalently crosslinked by hard nanodomains of triblock copolymers derived from carvomenthide and lactide: tunable strength and hydrolytic degradability

J. Jang, H. Park, H. Jeong, E. Mo, Y. Kim, J. S. Yuk, S. Q. Choi, Y. Kim and J. Shin, Polym. Chem., 2019, 10, 1245 DOI: 10.1039/C8PY01765D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements